ERMS
ENERGY RECOVERY MODULE
FOR STERLING UNITS

INSTALLATION OPERATING
&
MAINTENANCE INSTRUCTIONS
FOR: ERMS CURB

PART NO: ERMS--**--CB**A

ERMS Roof Curb

<table>
<thead>
<tr>
<th>SELECT HEIGHT</th>
<th>ERMS CURB PART#</th>
<th>BASE CURB HEIGHT "H"</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ERMS--**--CB14A</td>
<td>14"</td>
</tr>
<tr>
<td></td>
<td>ERMS--**--CB18A</td>
<td>18"</td>
</tr>
<tr>
<td></td>
<td>ERMS--**--CB24A</td>
<td>24"</td>
</tr>
</tbody>
</table>

FEATURES
- Roof curb is heavy ga. galvanized steel.
- Full perimeter wood nailer provided.
- Gasket material & assembly hardware provided.
- Curb is shipped knocked down.

<table>
<thead>
<tr>
<th>SELECT PRODUCT</th>
<th>ERMS CURB PART#</th>
<th>HVAC UNIT CAPACITY (CA)</th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ERMS--10--CB**A</td>
<td>10 / 15</td>
<td>85.50</td>
<td>26.425</td>
</tr>
<tr>
<td></td>
<td>ERMS--20--CB**A</td>
<td>20 / 25</td>
<td>107.50</td>
<td>37.425</td>
</tr>
<tr>
<td></td>
<td>ERMS--30--CB**A</td>
<td>30 / 35</td>
<td>136.125</td>
<td>48.425</td>
</tr>
<tr>
<td></td>
<td>ERMS--40--CB**A</td>
<td>40</td>
<td>136.125</td>
<td>53.925</td>
</tr>
</tbody>
</table>

PROJECT:
DATE:
ENGINEER:
DISTRIBUTOR:
DRAWING NUMBER: 9600st.dwg
MR 07.25.11
Page 3 of 28
1. Remove "Curb Rail Assy - End" from HVAC roof curb, save for later use. See Detail A.

2. Locate "ERMS Rail Assy - Brace" from ERMS shipping package. Place brace in end of HVAC curb where "Curb Rail Assy - End" was removed from. See Detail B.

3. Locate (2) "ERMS Plate" from ERMS shipping package. Install per Detail C.

4. Locate (2) "ERMS Rail Assy - Side" and install with screws and bolts provided. See Detail C.

5. Locate "Curb Rail Assy - End" removed in Step #1. Place at end of ERMS curb and bolt in place with bolts provided. See Detail C.

6. Locate "ERMS Rail Assy - Brace". Install per Detail C.

7. Place gasket around perimeter and braces of the ERMS curb.
1. Remove all (15) screws located on the back of the rooftop unit and discard of them. Locate the (15) rivets provided and place them where the screws were removed from. (See Detail #1)

2. After all the rivets have been installed, locate the gasket provided, place gasket around opening on back of rooftop unit and edge of unit as shown in Detail #2.

3. Remove the access panel located on the side of the ERMS unit. This panel is located on the same side as the exhaust hood. (See Detail #3)

4. Slide ERMS unit into place against the back of the rooftop unit. The outward flanges on the back of the rooftop unit will slide into the opening on the ERMS unit. The bottom overhang on the ERMS unit will sit on top of the rooftop unit base rail. (See Detail #3 & #4B)

6 - FROM THE INSIDE OF THE ERMS UNIT, USE #12x1 TEK SCREWS PROVIDED AND SCREW THE ERMS UNIT TO THE ROOFTOP UNIT. MAKE SURE TO PUT SCREWS ON BOTH SIDES OF THE ERMS UNIT. USE THE ACCESS PANEL OPENING FROM STEP #3 TO BE ABLE TO LOCATE SCREWS ON FAR SIDE OF ERMS UNIT.

7 - AFTER ERMS UNIT IS ATTACHED TO BACK OF ROOFTOP UNIT, REPLACE THE SIDE ACCESS PANEL TO ERMS UNIT AND CLOSE THE BLOWER ACCESS DOOR.

8 - LOCATE THE 45° ANGLE FROM SHIPPING PACKAGE, PLACE GASKET AROUND THE FLANGES ON THE ANGLE. (SEE DETAIL #5), PLACE THE ANGLE ON TOP OF THE ROOFTOP UNIT AGAINST THE ERMS UNIT. (SEE DETAIL #4C), USING SCREWS PROVIDED, ATTACH IN PLACE. (SEE DETAIL #4C).

9 - REFER TO THE WIRING SCHEMATIC FOR WIRING AND START UP.
ROTARY ENERGY RECOVERY VENTILATOR

START-UP

INSTALLATION
1 - Place gasket on the top perimeter flange of the curb.
2 - For Downflow units: Place gasket on the duct support flanges around the downflow duct openings.
3 - Place the ERV on the curb. Make sure the duct openings on downflow units align with the duct openings in the curb.
4 - Connect power and control wiring to the ERV. See the wiring diagram. Provide disconnect means and overload protection as required by job conditions.

PRE-START-UP
1 - Turn off ERV disconnect, open access doors and remove access panels for pre-start-up inspection.
2 - Check the unit for racking of the Energy Wheel. Rotate the wheel by hand to ensure a smooth rotation. If there is excessive resistance to wheel rotation, and the wheel is not racked or damaged, then the seals used to minimize transfer between the air streams may need to be adjusted. Refer to the Energy Wheel information for seal adjustment.
3 - Check fan and wheel belt tension. Wheel belts are tensioned at the factory. Excessive wheel belt tension or its lack may indicate damage to the wheel. Refer to the Energy Wheel literature for further information.
4 - Check all pulleys and make sure all key ways are in place with the set screws tightened.
5 - Check motor mounting bolts. Make sure all bolts are tight.
6 - Check all electrical connections with the wiring diagram.
7 - Check all filters and wheels for obstructions that may inhibit performance.
8 - For units with blowers using vibration isolation springs: Remove shipping blocks and adjust isolators for free fan movement.

START-UP
1 - Activate the control circuit to energize the ERV.
2 - Check the energy wheel and the blowers for correct rotation. For wheel rotation direction, see the rotation label located near the wheel motor. If rotation is incorrect, de-energize the control circuit and turn off the disconnect. For three phase motors, swap two of the incoming power leads to the motor. For single phase motors, refer to the motor nameplate connection diagram.
3 - Balance the supply and exhaust blower airflows per the job schedule. Adjustable sheaves are provided on the motors unless otherwise specified.
4 - Check out ERV system per the sequence of operation.
5 - Record supply, exhaust and wheel motor running voltage and amperage information.
6 - Close all doors and access panels.
ENERGY RECOVERY VENTILATOR CHECK OUT

PROJECT _____________________________

ERV UNIT MODEL ___________________ UNIT TAG ___________________

DATE _____________ TECHNICIAN ________________________________

___ ERV CABINET IS INSTALLED (UNIT IS MOUNTED LEVEL, DUCT CONNEXIONS ARE SEALED,)

___ ELECTRICAL CONNECTIONS ARE TIGHT

___ VERIFY SUPPLY BLOWER, EXHAUST BLOWER AND ERV WHEEL ROTATE FREELY

___ SUPPLY AND EXHAUST MOTOR SHEAVE, BLOWER SHEAVE AND BLOWER WHEEL SET SCREWS ARE TIGHT.

___ LOW VOLTAGE WIRING IS CONNECTED

___ LINE VOLTAGE WIRING IS CONNECTED

___ VERIFY VOLTAGE ______ L1-L2 ______ L2- L3 ______ L1-L3

________ L1-N ______ L2-N ______ L3-N

___ VERIFY SUPPLY AND EXHAUST BLOWER ROTATION

___ SUPPLY BLOWER DATA AT 60HZ ________ CFM ________ RPM

MOTOR ______ T1 AMPS ______ T2 AMPS ______ T3 AMPS

MOTOR ______ BHP

___ EXHAUST BLOWER DATA AT 60HZ ________ CFM ________ RPM

MOTOR ______ T1 AMPS ______ T2 AMPS ______ T3 AMPS

MOTOR ______ BHP

___ ERV WHEEL MOTOR DATA AT 60HZ

MOTOR ______ T1 AMPS ______ T2 AMPS ______ T3 AMPS
SEQUENCE OF OPERATION

STANDARD OPERATION
When the indoor fan motor of the HVAC equipment is energized, the 24vac control relay in the ERV will be energized. The contactors for the supply fan, exhaust fan and energy wheel will be activated and the ERV will begin operation. When the HVAC unit indoor fan motor is de-energized, the 24vac control relay in the ERV will be de-energized. The contactors for the supply fan, exhaust fan and energy wheel will be de-activated and the ERV will stop operation.

MOTORIZED INTAKE DAMPER AND/OR EXHAUST DAMPER OPTION
Systems with a motorized intake or exhaust damper will open the damper fully when the control circuit is activated prior to starting the energy wheel and blower motors.

ON/OFF FROST CONTROL OPTION
When the temperature falls below the frost threshold set point, a thermostat, located in the outside air intake, will stop the operation of the ERV. When the temperature rises above the frost threshold, the ERV will be re-activated.

PRE-HEAT FROST CONTROL OPTION
When the temperature falls below the frost threshold set point, a thermostat, located in the outside air intake, will activate the pre-heat at the outside air intake to prevent frosting on the energy wheel. When the temperature rises above the frost threshold, the thermostat will de-activate the pre-heat.
ROUTINE MAINTENANCE

FRESH AIR FILTER
The outside air intake hood includes water entrainment filters. Periodically these filters must be inspected for dust and dirt buildup which could affect the performance of the ERV by restricting airflow. When the filters require cleaning, remove them from the intake hood. Clean the filters with warm water and a mild detergent and allow to air dry. Once the filters are dry, reinstall in the intake hood.

ENERGY WHEEL FILTERS
The ERV is supplied with pleated paper filters unless ordered otherwise. Periodically inspect the filters for dust accumulation. A build up of dust could affect the performance of the ERV. Replace when the air flow becomes restricted.

BLOWERS & MOTORS
Inspect all drive belts for proper tensions and wear. Replace worn belts. Do not adjust variable pitch sheaves after system balancing is complete or incorrect airflow may result. For Belt tension, adjust motor plate only. Check set screws for tightness on blowers, bearing collars, shafts and keyways. Inspect blower and motor bearings for smooth operation.

MOTORIZED DAMPERS
Check operation of motorized dampers. Ensure that blade hardware is tight and blades open and close freely without binding. Verify that ERV does not activate until the damper(s) have opened.

ENERGY WHEEL
Refer to the included AIRXCHANGE wheel manual for cleaning, inspection and adjustment.
Cleaning Airxchange Wheels

Overview

All air-to-air energy recovery devices will get dirty over time, even with well-maintained filtration. One advantage Rotary wheel technology has over fixed exchangers is the ability to ‘self clean’ of dry dust and dirt by rotating between two opposing airstreams traveling from 500-800 fpm. In wheels with laminar flow matrix designs, this self-cleaning feature works well until the wheel is exposed to oils, tars or greases in either the supply or exhaust air streams. Once these pollutants deposit on the rotary surface they become ‘sticky’ and begin to attract and hold the dust particles that previously passed thru the wheel. Over time this particle build up can lead to blocked airflow passages, loss of recovery, excessive pressure drop through the wheel and loss of energy savings.

Field experience shows that offices, schools and other ‘clean’ environments will often go 10 years before any build up of dust and dirt is noticed. Restaurants, Casinos, factory environments experience fairly rapid build up of contaminants and require multiple cleanings a year to maintain airflow and recovery.

Field experience also shows that all rotary wheels will experience some degradation of latent recovery, long before they appear to be plugged. While exhaust air contamination is the primary source, local environmental conditions can contribute. For example units located near heavily traveled expressways or downwind of fast food restaurants may experience measurable loss of latent performance within 3-5 years of operation.

Airxchange wheels are manufactured to be easily cleaned outside of the unit. The benefits include elimination of a drain pan in the wheel section of the unit and associated IAQ problems, the elimination of the need to drag a pressure hose to the unit on a roof and the ability to soak the individual segments clean so that the need for cleaning is less frequent. An alternate to cleaning is the periodic replacement of dirty segments. This can be economically advantageous when both labor costs and energy costs are rising.

Recommended Cleaning Procedure

Access the energy recovery wheel and remove the energy transfer matrix segments. (For one-piece wheels 25 inches in diameter and smaller, remove the wheel from the cassette.) First brush the wheel face to remove loose accumulated dirt. Wash the segments or small wheels with a non-acid based (evaporator) coil cleaner or alkaline detergent solution. Non-acid based coil cleaner such as KMP Acti-Clean AK-1 concentrate in a 5% solution has been demonstrated to provide excellent results. Do not use acid based cleaners, aromatic solvents, temperatures in excess of 170 °F or steam; damage to the wheel may result. Soak in the cleaning solution until grease and tar deposits are loosened. An overnight soak may be required to adequately loosen heavy deposits of tar and oil based contaminants.

Internal heat exchange surfaces may be examined by separating the polymer strips by hand. (Note: some staining of the desiccant may remain and is not harmful to performance.) After soaking, rinse the dirty solution from the wheel until the water runs clear. Allow excess water to drain prior to replacing segments in the wheel or reinstalling the wheel in the cassette. A small amount of water remaining in the wheel will be dried out by the airflow.
The Airxchange Energy Recovery Cassette consists of a frame, wheel, wheel drive system and energy transfer segments. Segments are removable for cleaning or replacement. The segments rotate through counterflowing exhaust and outdoor air supply streams where they transfer heat and water vapor from the warm, moist air stream to the cooler and/or drier airstream. This energy recovery process can reduce cooling design loads by up to 4 tons per 1000 CFM of outdoor air ventilation while also reducing heating demand and humidification requirements. Operating savings, reduced demand charges and first cost equipment savings provide a rapid payback to the building owner.
The Models ERC-36 through ERC-86 Series cassette frames are constructed of heavy gauge G90 galvanized steel. The wheel assembly and segment frames are stainless steel. With the exception of replaceable drive motors, belts and segments, the cassette has a minimum design life of 20 years.

Wheel effectiveness and pressure drop are determined by the selection of air flow as outlined in the charts below.

The first two digits of the model number indicate the wheel diameter in inches. The next two digits (three in the 86 series) indicate the recommended maximum airflow rating (in hundreds of cubic feet per minute).

<table>
<thead>
<tr>
<th>SERIES</th>
<th>WEIGHT (lbs)</th>
<th>WHEEL SPEED (rpm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ERC-36</td>
<td>89</td>
<td>58</td>
</tr>
<tr>
<td>ERC-46</td>
<td>150</td>
<td>60</td>
</tr>
<tr>
<td>ERC-52</td>
<td>188</td>
<td>57</td>
</tr>
<tr>
<td>ERC-58</td>
<td>254</td>
<td>53</td>
</tr>
<tr>
<td>ERC-64</td>
<td>400</td>
<td>58</td>
</tr>
<tr>
<td>ERC-74</td>
<td>418</td>
<td>54</td>
</tr>
<tr>
<td>ERC-86</td>
<td>670</td>
<td>50</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SERIES</th>
<th>VOLTS</th>
<th>AMPS</th>
<th>PH</th>
<th>HZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>ERC-36</td>
<td>200-208/240</td>
<td>1.1 max.</td>
<td>1</td>
<td>50/60</td>
</tr>
<tr>
<td>ERC-46</td>
<td>200-208/240</td>
<td>2.7 max.</td>
<td>1</td>
<td>50/60</td>
</tr>
<tr>
<td>ERC-52</td>
<td>200-208/240</td>
<td>2.7 max.</td>
<td>1</td>
<td>50/60</td>
</tr>
<tr>
<td>ERC-58</td>
<td>200-230/460</td>
<td>1.3-1.2/0.6</td>
<td>3</td>
<td>60</td>
</tr>
<tr>
<td>ERC-64</td>
<td>200-230/460</td>
<td>1.3-1.2/0.6</td>
<td>3</td>
<td>60</td>
</tr>
<tr>
<td>ERC-74</td>
<td>200-230/460</td>
<td>1.3-1.2/0.6</td>
<td>3</td>
<td>60</td>
</tr>
<tr>
<td>ERC-86</td>
<td>200-230/460</td>
<td>1.3-1.2/0.6</td>
<td>3</td>
<td>60</td>
</tr>
</tbody>
</table>
PERFORMANCE

Wheel effectiveness, airflow and pressure drop are determined by the selection of energy transfer segments which provide a wide range of performance characteristics for any given wheel size as outlined in the charts below.

<table>
<thead>
<tr>
<th>ERC-3615</th>
<th>CFM</th>
<th>EFF</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>800</td>
<td>86</td>
<td>0.51</td>
<td></td>
</tr>
<tr>
<td>900</td>
<td>85</td>
<td>0.57</td>
<td></td>
</tr>
<tr>
<td>1000</td>
<td>85</td>
<td>0.63</td>
<td></td>
</tr>
<tr>
<td>1100</td>
<td>84</td>
<td>0.70</td>
<td></td>
</tr>
<tr>
<td>1200</td>
<td>83</td>
<td>0.76</td>
<td></td>
</tr>
<tr>
<td>1300</td>
<td>82</td>
<td>0.82</td>
<td></td>
</tr>
<tr>
<td>1400</td>
<td>82</td>
<td>0.89</td>
<td></td>
</tr>
<tr>
<td>1500</td>
<td>81</td>
<td>0.95</td>
<td></td>
</tr>
<tr>
<td>1600</td>
<td>80</td>
<td>1.01</td>
<td></td>
</tr>
<tr>
<td>1700</td>
<td>79</td>
<td>1.08</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ERC-3623</th>
<th>CFM</th>
<th>EFF</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>1500</td>
<td>76</td>
<td>0.64</td>
<td></td>
</tr>
<tr>
<td>1700</td>
<td>75</td>
<td>0.72</td>
<td></td>
</tr>
<tr>
<td>1800</td>
<td>74</td>
<td>0.77</td>
<td></td>
</tr>
<tr>
<td>1900</td>
<td>73</td>
<td>0.81</td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>72</td>
<td>0.85</td>
<td></td>
</tr>
<tr>
<td>2100</td>
<td>72</td>
<td>0.89</td>
<td></td>
</tr>
<tr>
<td>2200</td>
<td>71</td>
<td>0.94</td>
<td></td>
</tr>
<tr>
<td>2300</td>
<td>70</td>
<td>0.98</td>
<td></td>
</tr>
<tr>
<td>2400</td>
<td>69</td>
<td>1.02</td>
<td></td>
</tr>
<tr>
<td>2500</td>
<td>69</td>
<td>1.07</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ERC-3625</th>
<th>CFM</th>
<th>EFF</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>1800</td>
<td>73</td>
<td>0.74</td>
<td></td>
</tr>
<tr>
<td>1900</td>
<td>72</td>
<td>0.78</td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>71</td>
<td>0.82</td>
<td></td>
</tr>
<tr>
<td>2100</td>
<td>71</td>
<td>0.86</td>
<td></td>
</tr>
<tr>
<td>2200</td>
<td>70</td>
<td>0.90</td>
<td></td>
</tr>
<tr>
<td>2300</td>
<td>69</td>
<td>0.94</td>
<td></td>
</tr>
<tr>
<td>2400</td>
<td>68</td>
<td>0.99</td>
<td></td>
</tr>
<tr>
<td>2500</td>
<td>68</td>
<td>1.03</td>
<td></td>
</tr>
<tr>
<td>2600</td>
<td>67</td>
<td>1.07</td>
<td></td>
</tr>
<tr>
<td>2700</td>
<td>66</td>
<td>1.11</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ERC-4639</th>
<th>CFM</th>
<th>EFF</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>2300</td>
<td>77</td>
<td>0.57</td>
<td></td>
</tr>
<tr>
<td>2500</td>
<td>76</td>
<td>0.62</td>
<td></td>
</tr>
<tr>
<td>2700</td>
<td>75</td>
<td>0.66</td>
<td></td>
</tr>
<tr>
<td>2900</td>
<td>74</td>
<td>0.71</td>
<td></td>
</tr>
<tr>
<td>3000</td>
<td>73</td>
<td>0.74</td>
<td></td>
</tr>
<tr>
<td>3500</td>
<td>71</td>
<td>0.86</td>
<td></td>
</tr>
<tr>
<td>3900</td>
<td>69</td>
<td>0.96</td>
<td></td>
</tr>
<tr>
<td>4000</td>
<td>68</td>
<td>0.98</td>
<td></td>
</tr>
<tr>
<td>4500</td>
<td>66</td>
<td>0.98</td>
<td></td>
</tr>
<tr>
<td>4750</td>
<td>65</td>
<td>1.11</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ERC-5230</th>
<th>CFM</th>
<th>EFF</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>1600</td>
<td>86</td>
<td>0.53</td>
<td></td>
</tr>
<tr>
<td>1800</td>
<td>86</td>
<td>0.59</td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>85</td>
<td>0.66</td>
<td></td>
</tr>
<tr>
<td>2200</td>
<td>84</td>
<td>0.72</td>
<td></td>
</tr>
<tr>
<td>2400</td>
<td>84</td>
<td>0.79</td>
<td></td>
</tr>
<tr>
<td>2600</td>
<td>83</td>
<td>0.86</td>
<td></td>
</tr>
<tr>
<td>2800</td>
<td>82</td>
<td>0.92</td>
<td></td>
</tr>
<tr>
<td>3000</td>
<td>81</td>
<td>0.99</td>
<td></td>
</tr>
<tr>
<td>3500</td>
<td>80</td>
<td>1.15</td>
<td></td>
</tr>
<tr>
<td>3900</td>
<td>79</td>
<td>1.28</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ERC-5245</th>
<th>CFM</th>
<th>EFF</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>2400</td>
<td>80</td>
<td>0.51</td>
<td></td>
</tr>
<tr>
<td>2600</td>
<td>79</td>
<td>0.55</td>
<td></td>
</tr>
<tr>
<td>2800</td>
<td>78</td>
<td>0.60</td>
<td></td>
</tr>
<tr>
<td>3000</td>
<td>77</td>
<td>0.64</td>
<td></td>
</tr>
<tr>
<td>3500</td>
<td>75</td>
<td>0.74</td>
<td></td>
</tr>
<tr>
<td>3900</td>
<td>74</td>
<td>0.83</td>
<td></td>
</tr>
<tr>
<td>4000</td>
<td>73</td>
<td>0.85</td>
<td></td>
</tr>
<tr>
<td>4500</td>
<td>71</td>
<td>0.96</td>
<td></td>
</tr>
<tr>
<td>4750</td>
<td>70</td>
<td>1.01</td>
<td></td>
</tr>
<tr>
<td>5000</td>
<td>69</td>
<td>1.06</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ERC-5255</th>
<th>CFM</th>
<th>EFF</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>2900</td>
<td>77</td>
<td>0.57</td>
<td></td>
</tr>
<tr>
<td>3000</td>
<td>76</td>
<td>0.59</td>
<td></td>
</tr>
<tr>
<td>3500</td>
<td>74</td>
<td>0.69</td>
<td></td>
</tr>
<tr>
<td>3900</td>
<td>73</td>
<td>0.77</td>
<td></td>
</tr>
<tr>
<td>4000</td>
<td>72</td>
<td>0.79</td>
<td></td>
</tr>
<tr>
<td>4500</td>
<td>70</td>
<td>0.89</td>
<td></td>
</tr>
<tr>
<td>4750</td>
<td>69</td>
<td>0.94</td>
<td></td>
</tr>
<tr>
<td>5000</td>
<td>68</td>
<td>0.99</td>
<td></td>
</tr>
<tr>
<td>5500</td>
<td>66</td>
<td>1.09</td>
<td></td>
</tr>
<tr>
<td>6000</td>
<td>65</td>
<td>1.18</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ERC-55860</th>
<th>CFM</th>
<th>EFF</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>2600</td>
<td>82</td>
<td>0.44</td>
<td></td>
</tr>
<tr>
<td>3000</td>
<td>80</td>
<td>0.50</td>
<td></td>
</tr>
<tr>
<td>3500</td>
<td>78</td>
<td>0.58</td>
<td></td>
</tr>
<tr>
<td>4000</td>
<td>77</td>
<td>0.67</td>
<td></td>
</tr>
<tr>
<td>4500</td>
<td>75</td>
<td>0.75</td>
<td></td>
</tr>
<tr>
<td>4750</td>
<td>74</td>
<td>0.79</td>
<td></td>
</tr>
<tr>
<td>5000</td>
<td>73</td>
<td>0.83</td>
<td></td>
</tr>
<tr>
<td>5500</td>
<td>72</td>
<td>0.92</td>
<td></td>
</tr>
<tr>
<td>6000</td>
<td>70</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>6250</td>
<td>69</td>
<td>1.08</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ERC-7460</th>
<th>CFM</th>
<th>EFF</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>3000</td>
<td>88</td>
<td>0.50</td>
<td></td>
</tr>
<tr>
<td>3500</td>
<td>87</td>
<td>0.58</td>
<td></td>
</tr>
<tr>
<td>3900</td>
<td>86</td>
<td>0.65</td>
<td></td>
</tr>
<tr>
<td>4000</td>
<td>86</td>
<td>0.67</td>
<td></td>
</tr>
<tr>
<td>4500</td>
<td>85</td>
<td>0.75</td>
<td></td>
</tr>
<tr>
<td>5000</td>
<td>84</td>
<td>0.83</td>
<td></td>
</tr>
<tr>
<td>5500</td>
<td>84</td>
<td>0.92</td>
<td></td>
</tr>
<tr>
<td>6000</td>
<td>83</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>6500</td>
<td>82</td>
<td>1.08</td>
<td></td>
</tr>
<tr>
<td>7000</td>
<td>81</td>
<td>1.17</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ERC-6445</th>
<th>CFM</th>
<th>EFF</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>2700</td>
<td>86</td>
<td>0.59</td>
<td></td>
</tr>
<tr>
<td>2800</td>
<td>86</td>
<td>0.50</td>
<td></td>
</tr>
<tr>
<td>2900</td>
<td>85</td>
<td>0.61</td>
<td></td>
</tr>
<tr>
<td>3000</td>
<td>85</td>
<td>0.65</td>
<td></td>
</tr>
<tr>
<td>3500</td>
<td>84</td>
<td>0.67</td>
<td></td>
</tr>
<tr>
<td>3900</td>
<td>84</td>
<td>0.82</td>
<td></td>
</tr>
<tr>
<td>4000</td>
<td>83</td>
<td>0.85</td>
<td></td>
</tr>
<tr>
<td>4500</td>
<td>82</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>5000</td>
<td>82</td>
<td>1.05</td>
<td></td>
</tr>
<tr>
<td>5500</td>
<td>81</td>
<td>1.16</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ERC-6475</th>
<th>CFM</th>
<th>EFF</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>4000</td>
<td>78</td>
<td>0.53</td>
<td></td>
</tr>
<tr>
<td>4500</td>
<td>77</td>
<td>0.60</td>
<td></td>
</tr>
<tr>
<td>5000</td>
<td>76</td>
<td>0.67</td>
<td></td>
</tr>
<tr>
<td>5500</td>
<td>75</td>
<td>0.73</td>
<td></td>
</tr>
<tr>
<td>6000</td>
<td>73</td>
<td>0.80</td>
<td></td>
</tr>
<tr>
<td>6500</td>
<td>72</td>
<td>0.87</td>
<td></td>
</tr>
<tr>
<td>7000</td>
<td>71</td>
<td>0.93</td>
<td></td>
</tr>
<tr>
<td>7500</td>
<td>70</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>8000</td>
<td>69</td>
<td>1.05</td>
<td></td>
</tr>
<tr>
<td>9000</td>
<td>67</td>
<td>1.13</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ERC-846170</th>
<th>CFM</th>
<th>EFF</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>9000</td>
<td>77</td>
<td>0.57</td>
<td></td>
</tr>
<tr>
<td>10000</td>
<td>75</td>
<td>0.64</td>
<td></td>
</tr>
<tr>
<td>11000</td>
<td>74</td>
<td>0.70</td>
<td></td>
</tr>
<tr>
<td>12000</td>
<td>73</td>
<td>0.77</td>
<td></td>
</tr>
<tr>
<td>13000</td>
<td>72</td>
<td>0.83</td>
<td></td>
</tr>
<tr>
<td>14000</td>
<td>71</td>
<td>0.89</td>
<td></td>
</tr>
<tr>
<td>15000</td>
<td>69</td>
<td>0.96</td>
<td></td>
</tr>
<tr>
<td>16000</td>
<td>68</td>
<td>1.02</td>
<td></td>
</tr>
<tr>
<td>17000</td>
<td>67</td>
<td>1.08</td>
<td></td>
</tr>
<tr>
<td>18000</td>
<td>66</td>
<td>1.15</td>
<td></td>
</tr>
</tbody>
</table>

RECEIVING INSPECTION

Inspect all cassettes for freight damage upon receipt. Inspect cassette frame, wheel assembly and segments for damage and verify wheel turns freely by hand (clockwise when viewed from pulley side). Report any damage immediately to the freight company.

HANDLING

Handle cassettes with care. All cassettes should be lifted by the bearing support beam. Holes are provided on both sides of the bearing support beams to facilitate rigging (see page 4, Figure 1).

Models ERC-64 Series and larger are shipped with wheel segments removed from the wheel frame to facilitate installation of cassette into unit. Segments should be properly stored during installation of cassette to avoid damage on the factory floor (See page 6, Figures 4 & 5 for segment installation).
DESIGN CONSIDERATIONS

Energy recovery cassettes can be incorporated within the design of packaged rooftop units, packaged airhandlers, energy recovery ventilators, or site built air handling systems. In each case, it is recommended that the following considerations be addressed.

Accessibility

The cassette and all its operative parts; i.e.: motor, belt, pulley, bearings, seals and energy transfer segments must be accessible for service and maintenance. The most practical design to allow complete access is one in which the cassette can slide at least half way out of the cabinet or ductwork for service. This design requires that adequate clearance be provided outside the enclosure.

Where cassettes are permanently installed in a cabinet, access to both sides of the cassette must be provided. Internal partitions that separate air streams must allow access for bearing removal.

Orientation & Support

The Energy Recovery Cassette may be mounted in any orientation. However, **Care must be taken to make certain that the cassette frame remains flat and the bearing beams are not racked as shown in Figure 2.** To verify, make certain that the distance between wheel rim and bearing beam is the same at each end of the bearing beam, to within 1/4 of an inch (dimension A & B, Fig. 2). This amount of racking can be compensated for by adjusting the diameter seals (see Fig. 3). **If greater than 1/4 inch, racking must be corrected to ensure that drive belt will not disengage from wheel.**

Diameter Seals

Diameter seals are adjusted at the factory when the wheel is in the vertical position. Cassettes installed at angles greater than 30 degrees from vertical will require seal re-adjustment (see page 6, Figure 3). Adjust diameter seals so as to avoid excessive wheel drag. A final check of seal adjustment is recommended for all designs.

Wheel Drive Motor

Cassette series 36 through 52 are provided with single phase wheel drive motors (capacitor included). Single phase motors may be pre-wired in the factory with either a three pin Amp connector or three prong NEMA plug. The motor is designed to rotate clockwise when viewed from the shaft/pulley side.

Three phase wheel drive motors are provided with optional 208/230V or 460/480V wiring. Motors may be pre-wired in the factory upon request. Wiring diagrams are provided with each motor. When wired according to wiring diagram, motor rotates clockwise when viewed from the shaft/pulley side.

OPERATION

CAUTION

Keep hands away from rotating wheel!! Contact with rotating wheel can cause physical injury.

Start Up Procedure

1. By hand, turn wheel clockwise (as viewed from the pulley side), to verify wheel turns freely through 360° rotation.

2. Before applying power to drive motor, confirm wheel segments are fully engaged in wheel.
frame and segment retainers are completely fastened. (See Figure 4 page 6).

3. With hands and objects away from moving parts, activate unit and confirm wheel rotation. Wheel rotates clockwise (as viewed from the pulley side).

4. If wheel has difficulty starting, turn power off and inspect for excessive interference between the wheel surface and each of the four (4) diameter seals. To correct, loosen diameter seal adjusting screws and back adjustable diameter seals away from surface of wheel, apply power to confirm wheel is free to rotate, then re-adjust and tighten hub and diameter seals according to instructions on page 6 (Figure 3).

5. Start and stop wheel several times to confirm seal adjustment and to confirm belt is tracking properly on wheel rim (approximately 1/4” from outer edge of rim).

ROUTINE MAINTENANCE

Routine maintenance of the Energy Recovery Cassettes includes periodic cleaning of the Energy Recovery Wheel as well as inspection of the Air Seals and Wheel Drive Components as follows:

Cleaning

The need for periodic cleaning of the energy recovery wheel will be a function of operating schedule, climate and contaminants in the indoor air being exhausted and the outdoor air being supplied to the building.

The Airxchange wheel is “self-cleaning” with respect to dry particles due to its laminar flow characteristics. Smaller particles pass through; larger particles land on the surface and are blown clear as the flow direction is reversed. Any material that builds up on the face of the wheel can be removed with a brush or vacuum. The primary need for cleaning is to remove oil based aerosols that have condensed on energy transfer surfaces.

A characteristic of all dry desiccants, such films can close off micron sized pores at the surface of the desiccant material, reducing the efficiency by which the desiccant can adsorb and desorb moisture and also build up so as to reduce airflow.

In a reasonably clean indoor environment such as a school or office building, measurable reductions of airflow or loss of sensible (temperature) effectiveness may not occur for several years. Measurable changes in latent energy (water vapor) transfer can occur in shorter periods of time in applications such as moderate occupant smoking or cooking facilities. In applications experiencing unusually high levels of occupant smoking or oil based aerosols such as industrial applications involving the ventilation of machine shop areas for example, annual washing of energy transfer may be necessary to maintain latent transfer efficiency. Proper cleaning of the energy recovery wheel will restore latent effectiveness to near original performance.

To clean, gain access to the energy recovery wheel and remove segments. Brush foreign material from the face of the wheel. Wash the segments or small wheels in a 5% solution of non-acid based coil cleaner (such as Acti-Klean, available through Grainger, Stock # 5W402) or alkaline detergent and warm water.

Soak in the solution until grease and tar deposits are loosened (Note: some staining of the desiccant may remain and is not harmful to performance). Before removing, rapidly run finger across surface of segment to separate polymer strips for better cleaning action. Rinse dirty solution from segment and remove excess water before reinstalling in wheel.

CAUTION

Do Not use acid based cleaners, aromatic solvents, steam or temperatures in excess of 170ºF; damage to the wheel may occur!

Air Seals

Four adjustable diameter seals are provided on each cassette to minimize transfer of air between the counterflowing airstreams.

To adjust diameter seals, loosen diameter seal adjusting screws and back seals away from wheel surface (Figure 3 page 6). Rotate wheel clockwise until two opposing spokes are hidden behind the bearing support beam. Using a folded piece of paper as a feeler gauge, position paper between the wheel surface and diameter seals. Adjust seals towards wheel surface until a slight friction on the feeler gauge (paper) is detected. Retighten adjusting screws and recheck clearance with “feeler” gauge.

Wheel Drive Components

The wheel drive motor bearings are pre-lubricated and no further lubrication is necessary.

The wheel drive pulley is secured to the drive motor shaft by a combination of either a key or D slot and set screw. The set screw is secured with removable locktite to prevent loosening. Annually confirm set screw is secure.

The wheel drive belt is a urethane stretch belt designed to provide constant tension through the life of the belt. No adjustment is required. Inspect the drive belt annually for proper tracking and tension. A properly tensioned belt will turn the wheel immediately after power is applied with no visible slippage during start-up.
Wheel segments are secured to the wheel frame by a Segment Retainer which pivots on the wheel rim and is held in place by a Segment Retaining Catch (see Figure 4).

Figure 4 Segment Retainer

To install wheel segments follow steps one through five below. (See Fig. 5). Reverse procedure for segment removal.

1. Unlock two segment retainers (one on each side of the selected segment opening.

2. With the embedded stiffener facing the motor side, insert the nose of the segment between the hub plates.

3. Holding segment by the two outer corners, press the segment towards the center of the wheel and inwards against the spoke flanges. If hand pressure does not fully seat the segment, insert the flat tip of a screw driver between the wheel rim and outer corners of the segment and apply downward force while guiding the segment into place.

4. Close and latch each Segment Retainer under Segment Retaining Catch.

Figure 5 Segment Installation

SERVICE

Segment Installation & Replacement

CAUTION

Disconnect electrical power before servicing energy recovery cassette

CAUTION

Always keep hands away from bearing support beam when installing or removing segments. Failure to do so could result in severe injury to fingers or hand.

Figure 3 Diameter Seal Adjustment

Series 36 through 74

Series 86
Slowly rotate the wheel 180°. Install the second segment opposite the first for counterbalance. Rotate the two installed segments 90° to balance the wheel while the third segment is installed. Rotate the wheel 180° again to install the fourth segment opposite the third. Repeat this sequence with the remaining four segments.

Wheel Drive Motor & Pulley Replacement

1. Disconnect power to wheel drive motor.
2. Remove belt from pulley and position temporarily around wheel rim.
3. Loosen set screw in wheel drive pulley using Allen wrench and remove pulley from motor drive shaft.
4. While supporting weight of drive motor in one hand, loosen and remove (4) mounting bolts.
5. Install replacement motor with hardware kit supplied.
6. Install pulley to dimension shown in (Figure 6) and secure set screw to drive shaft.
7. Stretch belt over pulley and engage in groove.
8. Follow start-up procedure on page 4.

Figure 6 Pulley Location

Belt Replacement (See Figure 7)

1. Obtain access to the pulley side bearing access plate. Bearing access plates are not provided on Series 36 cassettes. Remove two bearing access plate retaining screws and the access plate.
3. Using socket wrench with extension, remove two nuts which secure bearing housing to the bearing support beam. Slide bearing from shaft. **Note:** Slight hand pressure against wheel rim will lift weight of wheel from inner race of bearing to assist bearing removal and installation. If not removable by hand, use bearing puller.
4. Using a wrench, remove diameter seal retaining screws (Series 36 through 74) or hub seal retaining screws (Series 86). Remove diameter seals (Series 36 through 74) or hub seal (Series 86) from bearing beam (see Fig. 9, 10 & 11).
5. Form a small loop of belt and pass it through the hole in the bearing support beam. Grasp the belt at the wheel hub and pull the entire belt down. Loop the trailing end of the belt over the shaft (Fig. 8 & 9 shows belt partially through the opening).
6. Reinstall the bearing onto the wheel shaft, being careful to engage the two locating pins into the holes in the bearing support beam. Secure the bearing with two self locking nuts.
7. Install the belts around the wheel and pulley according to the instructions provided with the belt.
8. Reinstall diameter seals or hub seal and tighten retaining screws (see page 5 for seal adjustment). Rotate wheel in clockwise direction to determine that wheel rotates freely with slight drag on seals.
9. Reinstall bearing locking collar. Rotate collar by hand in the direction the wheel rotates (see label provided on each cassette for wheel rotation). Lock in position by tapping drift pin hole with hammer and drift. Secure in position by tightening set screw.
10. Reinstall Bearing Access Cover.
11. Apply power to wheel and ensure that the wheel rotates freely without interference.
Alternate Belt Replacement Methods

Alternate belt replacement methods may be used in some applications depending upon accessibility of the cassette. Consult instructions provided with the belt for further information.

REPLACEMENT PARTS

How to Order

Refer to the parts list and exploded view on pages 10 through 15 to obtain replacement part numbers.

Contact your equipment manufacturer for parts service. Order by Part Number. Serial Number (SN:) of cassette must be provided in order to verify proper part number selection. Serial Numbers are provided on product label (see Figure 7).

Figure 1 Product Label

Figure 8 Belt Replacement (Figure 8 shown with diameter seals removed)
ILLUSTRATED PARTS BREAKDOWN

FOR

ENERGY RECOVERY CASSETTES

SERIES

ERC-36
ERC-46
ERC-52
ERC-58
ERC-64
ERC-74
ERC-86
ILLUSTRATED PARTS BREAKDOWN
FOR
36 & 52 SERIES ENERGY RECOVERY CASSETTES

<table>
<thead>
<tr>
<th>ITEM</th>
<th>QTY</th>
<th>DESCRIPTION</th>
<th>ERC-3615</th>
<th>ERC-3623</th>
<th>ERC-3625</th>
<th>ERC-5230</th>
<th>ERC-5245</th>
<th>ERC-5255</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
<td>Cover – Bearing</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>181778</td>
<td>181778</td>
<td>181778</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>Bearing – Wheel w/collar</td>
<td>181715</td>
<td>181715</td>
<td>181715</td>
<td>181715</td>
<td>181715</td>
<td>181715</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>Dia. Seal Assembly</td>
<td>181629</td>
<td>181629</td>
<td>181629</td>
<td>181725</td>
<td>181725</td>
<td>181725</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>Dia. Seal Assembly</td>
<td>181630</td>
<td>181630</td>
<td>181630</td>
<td>181724</td>
<td>181724</td>
<td>181724</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>Dia. Seal Assembly</td>
<td>181627</td>
<td>181627</td>
<td>181627</td>
<td>181724</td>
<td>181724</td>
<td>181724</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>Dia. Seal Assembly</td>
<td>181628</td>
<td>181628</td>
<td>181628</td>
<td>181725</td>
<td>181725</td>
<td>181725</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>Dia. Seal Insert Set (8/set)</td>
<td>181653</td>
<td>181653</td>
<td>181653</td>
<td>181766</td>
<td>181766</td>
<td>181766</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>Shaft – Wheel Drive</td>
<td>183637</td>
<td>183637</td>
<td>183637</td>
<td>181779</td>
<td>181779</td>
<td>181779</td>
</tr>
<tr>
<td>14</td>
<td>8</td>
<td>Segment, Desiccant – Single</td>
<td>181647</td>
<td>181651</td>
<td>183635</td>
<td>181752</td>
<td>181745</td>
<td>18520004</td>
</tr>
<tr>
<td>14</td>
<td>8</td>
<td>Segment, Sensible – Single</td>
<td>181645</td>
<td>181649</td>
<td>183636</td>
<td>181753</td>
<td>181747</td>
<td>18520005</td>
</tr>
<tr>
<td>14</td>
<td>1</td>
<td>Segment Set-Desiccant</td>
<td>181646</td>
<td>181650</td>
<td>183633</td>
<td>181750</td>
<td>181744</td>
<td>18520002</td>
</tr>
<tr>
<td>14</td>
<td>1</td>
<td>Segment Set-Sensible</td>
<td>181644</td>
<td>181648</td>
<td>183634</td>
<td>181751</td>
<td>181746</td>
<td>18520003</td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>Cltp – Segment Retaining</td>
<td>181763</td>
<td>181763</td>
<td>181763</td>
<td>181763</td>
<td>181763</td>
<td>181763</td>
</tr>
<tr>
<td>16</td>
<td>1</td>
<td>Belt, Wheel Drive</td>
<td>181643</td>
<td>181643</td>
<td>181643</td>
<td>181770</td>
<td>181770</td>
<td>181770</td>
</tr>
<tr>
<td>17</td>
<td>1</td>
<td>Pulley, Wheel Drive</td>
<td>181760</td>
<td>181760</td>
<td>181760</td>
<td>181760</td>
<td>181760</td>
<td>181760</td>
</tr>
<tr>
<td>18</td>
<td>1</td>
<td>Seal-Wheel Perimeter</td>
<td>181652</td>
<td>181652</td>
<td>181652</td>
<td>181758</td>
<td>181758</td>
<td>181758</td>
</tr>
<tr>
<td>20</td>
<td>2</td>
<td>Seal – Rim</td>
<td>181622</td>
<td>181622</td>
<td>181622</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>20</td>
<td>4</td>
<td>Seal – Rim</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>181735</td>
<td>181735</td>
<td>181735</td>
</tr>
<tr>
<td>22</td>
<td>1</td>
<td>Motor – Wheel Drive, 230V w NEMA Plug</td>
<td>181759</td>
<td>181759</td>
<td>181759</td>
<td>181756</td>
<td>181756</td>
<td>181756</td>
</tr>
<tr>
<td>22</td>
<td>1</td>
<td>Motor – Wheel Drive, 230V w AMP Conn.</td>
<td>181761</td>
<td>181761</td>
<td>181761</td>
<td>181762</td>
<td>181762</td>
<td>181762</td>
</tr>
</tbody>
</table>

HARDWARE ITEMS

<table>
<thead>
<tr>
<th>ITEM</th>
<th>QTY</th>
<th>DESCRIPTION</th>
<th>SERIES 36</th>
<th>SERIES 52</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
<td>Screw, 10-32 x 3/8" Slotted Hex Washer, Type FZ</td>
<td>NA</td>
<td>X</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>Nut, M6-1 Self Locking Hex</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>Washer (shim), 0.500 OD x 0.265 ID x 0.031 Thick</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>Screw, 10-32 x 1/2" Sems Lock washer, Hex Head Slotted</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>8</td>
<td>Screw, M6 – 1-6G x 12mm Hex Cup</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>Screw, M5 x .08G Hex Washer Machine</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>19</td>
<td>2</td>
<td>Screw, Tek 10-16 x 1/2" Hex Washer</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>4</td>
<td>Screw, Tek 10-16 x 1/2" Hex Washer</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>4</td>
<td>Lock Nut, 8-32 Keps</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>
ILLUSTRATED PARTS BREAKDOWN

FOR

64 & 74 SERIES ENERGY RECOVERY CASSETTES

<table>
<thead>
<tr>
<th>ITEM</th>
<th>QTY PER</th>
<th>DESCRIPTION</th>
<th>ERC-6445</th>
<th>ERC-6475</th>
<th>ERC-7460</th>
<th>ERC-7490</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
<td>Cover – Bearing</td>
<td>18640035</td>
<td>18640035</td>
<td>18740035</td>
<td>18740035</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>Bearing – Wheel w/collar</td>
<td>18640036</td>
<td>18640036</td>
<td>18740019</td>
<td>18740019</td>
</tr>
<tr>
<td>8</td>
<td>2</td>
<td>Seal Assembly – Diameter</td>
<td>18640014</td>
<td>18640014</td>
<td>18740022</td>
<td>18740022</td>
</tr>
<tr>
<td>9</td>
<td>2</td>
<td>Seal Assembly – Diameter</td>
<td>18640013</td>
<td>18640013</td>
<td>18740015</td>
<td>18740015</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>Dia. Seal Insert Set (8/set)</td>
<td>18640015</td>
<td>18640015</td>
<td>18740021</td>
<td>18740021</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>Shaft – Wheel Drive</td>
<td>18640034</td>
<td>18640034</td>
<td>18740034</td>
<td>18740034</td>
</tr>
<tr>
<td>14</td>
<td>8</td>
<td>Segment, Desiccant – Single</td>
<td>18640004</td>
<td>18640008</td>
<td>18740010</td>
<td>18740005</td>
</tr>
<tr>
<td>14</td>
<td>8</td>
<td>Segment, Sensible – Single</td>
<td>18640002</td>
<td>18640006</td>
<td>18740009</td>
<td>18740004</td>
</tr>
<tr>
<td>14</td>
<td>1</td>
<td>Segment Set – Desiccant</td>
<td>18640003</td>
<td>18640007</td>
<td>18740008</td>
<td>18740002</td>
</tr>
<tr>
<td>14</td>
<td>1</td>
<td>Segment Set – Sensible</td>
<td>18640001</td>
<td>18640005</td>
<td>18740007</td>
<td>18740001</td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>Seal – Wheel Perimeter</td>
<td>18640016</td>
<td>18640016</td>
<td>18740018</td>
<td>18740018</td>
</tr>
<tr>
<td>16</td>
<td>1</td>
<td>Pulley, Wheel Drive</td>
<td>18640024</td>
<td>18640024</td>
<td>18740029</td>
<td>18740029</td>
</tr>
<tr>
<td>17</td>
<td>1</td>
<td>Belt, Wheel Drive</td>
<td>18640025</td>
<td>18640025</td>
<td>18740030</td>
<td>18740030</td>
</tr>
<tr>
<td>18</td>
<td>1</td>
<td>Seal – Rim, Pulley Side (2/set)</td>
<td>18640011</td>
<td>18640011</td>
<td>18740018</td>
<td>18740018</td>
</tr>
<tr>
<td>19</td>
<td>1</td>
<td>Seal – Rim, Motor Side (2/set)</td>
<td>18640012</td>
<td>18640012</td>
<td>18740016</td>
<td>18740016</td>
</tr>
<tr>
<td>20</td>
<td>1</td>
<td>Motor, 850 rpm-Wheel Drive</td>
<td>18740012</td>
<td>18740012</td>
<td>18740012</td>
<td>18740012</td>
</tr>
<tr>
<td>24</td>
<td>1</td>
<td>Clip – Segment Retaining</td>
<td>18740020</td>
<td>18740020</td>
<td>18740020</td>
<td>18740020</td>
</tr>
</tbody>
</table>

HARDWARE ITEMS

<table>
<thead>
<tr>
<th>ITEM</th>
<th>QTY</th>
<th>DESCRIPTION</th>
<th>SERIES 64</th>
<th>SERIES 74</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
<td>Screw, 10-32 x 3/8" Slotted Hex Washer Head, Type F</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>Nut, 5/16-18 Self Locking Hex</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>Nut, 3/8-16 Self Locking Hex</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>Washer, Flat 0.812 OD x 0.406 ID x 0.062</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>6</td>
<td>8</td>
<td>Screw, 5/16-18 x 1/2" Hex Cup</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>Washer, 5/16 External Tooth Lock</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>11</td>
<td>12</td>
<td>Screw, M5 x 0.8 x 16mm Hex Washer Head</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>21</td>
<td>4</td>
<td>Screw, 3/8 x 16 x 1" Hex Cup</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>22</td>
<td>4</td>
<td>Washer, Lock 3/8</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>23</td>
<td>4</td>
<td>Washer, Plain Flat 3/8</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>25</td>
<td>4</td>
<td>Screw, Tek 10-16 x 1/2" Hex Washer Head</td>
<td>x</td>
<td>x</td>
</tr>
</tbody>
</table>
HARDWARE ITEMS

<table>
<thead>
<tr>
<th>ITEM</th>
<th>QTY</th>
<th>DESCRIPTION</th>
<th>SERIES 46</th>
<th>SERIES 58</th>
<th>SERIES 86</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
<td>Screw, 10-32 x 3/8" Slotted Hex Washer, Type FZ</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>Nut, M6 x 1 Self Locking Hex</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>Washer, 0.500 OD x 0.265 ID x 0.31</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>Washer, 0.812 OD x .406 ID x .062</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>8</td>
<td>Screw, M6 x 1-6G x 12mm Hex Cup</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>8</td>
<td>Screw, 5/16" - 18 x 1/2" Hex Cup</td>
<td>x</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>Washer, lock M6 External Tooth</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>Washer, 5/16" External Tooth</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>12</td>
<td>8</td>
<td>Screw, M5 x 0.8 x 10 Hex Washer Machine</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>16</td>
<td>Screw, M5 x 0.8 x 16mm Hex Washer Head</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4</td>
<td>Nut, 8-32 Keps</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4</td>
<td>Screw, 3/8-16 x 1" Hex Cup</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>23</td>
<td>4</td>
<td>Washer, Lock 3/8"</td>
<td>NA</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>24</td>
<td>4</td>
<td>Washer, Plain Flat 3/8"</td>
<td>NA</td>
<td>x</td>
<td>x</td>
</tr>
</tbody>
</table>
PRODUCT IDENTIFICATION

Fill in the information below for a permanent record of equipment installed on the job site. Model Number and Serial Number for the Energy Recovery Cassettes are designated on the cassette’s Product Label located next to the drive pulley. Information contained in the required section of the information box to the right must be provided when ordering service parts for the energy recovery cassette.

ENERGY RECOVERY CASSETTE

MODEL NUMBER

SERIAL NUMBER

HVAC UNIT

UNIT NUMBER

MODEL NUMBER

DATE CODE

SERIAL NUMBER

JOB NAME

LOCATION

START DATE